PSim专业共聚物与纳米复合材料仿真软件


1. PEGASUS公司介绍

    美国Tech-X公司由John R. Cary博士创立,总部设在美国科罗拉多州博尔德市,是专业的等离子技术软件供应商。公司的产品和技术紧跟等离子体领域的最新科研成果,是该领域全球最大的商业化软件技术公司。公司以技能的专业化和技术的创新性为最终追求,同时致力于创造能够实现大规模计算以及更好理解物理过程的软件产品,即在台式机到超级计算机各类计算机系统上,均能实现与等离子体物理、聚变、加速器技术相关的物理系统和过程的模拟,以增加对复杂物理现象的认识。公司软件与技术在美国多个国家级实验室得到应用,并承担了能源、国防部门的多项课题。自锦科公司将其引进国内以来,众多国内客户对软件表达了浓厚的兴趣并取得成功应用。
    Tech-X公司的产品主要包括电磁粒子仿真软件VSim、电磁流体仿真软件USim和专业共聚物与纳米复合材料仿真软件PSim。
    VSim是包含全电磁模型的粒子仿真软件,是等离子体、微波与真空电子器件、脉冲功率与高电压、加速器、放电等离子体等领域的尖端仿真工具。
    USim软件是支持等离子体、高超声速流体、化学反应流体模拟的专业电磁流体仿真软件,是求解高超声速流体力学、高能密度物理、天体物理、电气工程等领域复杂问题的高端工具。
    PSim软件是基于自洽场理论的介观尺度共聚物与纳米复合材料仿真软件。


2. PSim软件特征

    Why PSim
    PSim enables researchers to model complex block copolymer mixtures at the mesoscopic level critical to many nanoscience applications. PSim provides a flexible simulation tool for studying the mesoscale structure of complex polymeric materials by combining self-consistent field theory (SCFT) methods with high-performance computing.

  • PSim supports
  • - Fully flexible chain model
  • - Neutral, dense polymer melts
  • - Flory-type interactions
  • - Pseudo-spectral solution methods
  • - Hybrid-SCFT
  • - Arbitrary confinement
  • PSim simulates
  • - Multi-block Copolymer mixtures
  • - Confined Copolymers
  • - Nanocomposites
  • PSim constructure
  • - PSim软件分为PSimBase和PSimPlus模块。
  • - PSimBase:Multi-block Copolymer Mixtures.
  • - PSimPlus:Confined Nanoparticle Composites.

2.1 PSimBase Features

  • - Multi-block linear copolymers
  • - Arbitrary branched copolymers
  • - Mixtures of copolymers, homopolymers and solvent species
  • - Advanced relaxation techniques: Includes spectral filtering and zone annealing

2.2 PSimPlus Features

  • - All of the PSimBase features
  • - SCFT simulations with boundaries: Study the effects of confinement and structured surfaces on BCP morphologies.
  • - Nanoparticle mixtures: Study the effects of spherical nanoparticle inclusions on block copolymer structures of nanoparticle templating
  • - Specify arbitrary geometry for surfaces/confinement
  • - Hybrid-SCFT for explicit nanoparticle composites
  • - Specify Flory-type interactions for nanoparticles/surfaces
  • - Patterned surface interactions

2.3 Advantages of PSim

  • - Able to solve your largest problems (runs on large parallel clusters)
  • - Flexible methods for specifying arbitrary copolymer connectivity (eg linear mulit-blocks, branched copolymers and multi-armed stars)
  • - Includes advanced relaxation techniques: zone annealing and spectral filtering
  • - Models mixtures of copolymers, homopolymers and solvents within the numerical SCFT theory

2.4 PSim GUI

    PSim's built-in three-dimensional visualization capability, multi-platform availability (Linux, Mac OS X, and Windows), and examples will get you up and running quickly.



3. PSim案例

    Basic value proposition:

    Predicting the phase for a given copolymer system with a given confinement allows the tailoring of the soft material properties more efficiently than pure experimental studies.


3.1 Overview

    

Density isosurfaces for phase-segregating 3D linear diblock. Proctor & Gamble:predict how surfactants reduce surface tension at silicone-water interfaces by adjusting structure of the surfactant molecules in PSim simulation. This can aid in designing new detergent formulations.
Projected density values for phase-segregated linear ABA triblock. The total A monomer density is tracked separately from the contribution from one of the A endblocks.
Oak Ridge National Lab: Predict how degree of polymerization in branched copolymers affects structure/performance of membranes in polymer electrolyte fuel cells
2D block copolymer and nanoparticle mixture. The nanocomposite mixture is confined between parallel, flat surfaces. This simulations utilizes the hybrid-SCFT method in PolySwift++ for explicitly including the effects of embedded nanoparticles.
Univ. of Ohio at Akron: Predict how fullerene loading in a block copolymer nano-composite affects efficiency and charge separation characteristics for next-generation photovoltaic devices.
Monomer density plot for an ABC star-copolymer.
Intermediate morphology for a linear AB diblock. A slab 'zone' is moving through the simulation grid that simulates local heating. This zone-annealing technique can also be used to speed relaxation to the equilibrium structure much like in real experimental situations.
3D density isosurfaces for a linear diblock in cylindrical confinement. A cutaway view of the cylindrical confinement is shown as a brown isosurface.
Explore effects of structured interacting surfaces on coplymer morphology. This demonstrates the python function for specifying geometry.


3.2 PEM燃料电池仿真


3.3 嵌段共聚物仿真


3.4 纳米粒子复合材料仿真

A hybrid-SCFT algorithm (implemented in PSim) enables simulations of nanoparticle composites.


3.5 基底通道仿真

Arbitrary confinement example: substrate channels.


3.6 PSim软件相关论文

"Morphologies of ABC tri-block terpolymer melts containing poly(cyclohexadiene) : effects of conformational asymmetry" Kumar, R.; Sides, S.; Goswami, M.; Sumpter, B.; Hong, K.; Wu, X.; Russell, T.; Gido, S.; Misichronis, K.; Rangou, S.; Avgeropoulos, A.; Tsoukatos, T.; Hadjichristidis, N.; Beyer, F.; Mays, J. Langmuir, 29(6), pp 1995-2006 (2013).

 

"Morphology diagrams for A2B copolymer melts: real-space self-consistent field theory'' R. Kumar, Y. Li, S. W. Sides, J. W. Mays and B. G. Sumpter, Journal of Physics: Conference Series 402 (2012) 012042. doi:10.1088/1742-6596/402/1/012042.

 

"Phase Morphology and Molecular Structure Correlations in Model Fullerene Polymer Nanocomposites.'' Bucknall, D. G.; Bernardo, G.; Shofner, M. L.; Deb, N.; Raghavan, D.; Sumpter, B. G.; Sides, S. W.; Huq, A.; Karim, A., Materials Science Forum, 2012, 714, 63-66.

 

"Directed Assembly of Model Block Copolymer PCBM Blend System for Photovoltaic Applications'' G. Singh, M. M. Kulkarni, D. Smilgies, S. Sides, B. Berry, D. Raghavan, D.G. Bucknall, B. Sumpter and A. Karim MRS Proceedings (2012) 1390 : mrsf111390h1354

 

"Ordering of Sphere Forming SISO Tetrablock Terpolymers on a Simple Hexagonal Lattice'' J. Zhang, S. W. Sides and F. S. Bates, Macromolecules, 2012, 45 (1), pp 256– 265. DOI: 10.1021/ma202196c

 

C. Dyer, P. Driva, S.W. Sides, B.G. Sumpter, J. W. Mays, J. Chen, R. Kumar, M. Goswami and M. Dadmun, "Effect of macromolecular architecture on the morphology of polystyrene–polyisoprene block copolymers", Macromolecules.

 

K. Misichronis, S. Rangou, E. Ashcraft, R. Kumar, M. Dadmun, B.G. Sumpter, N.E. Zafeiropoulos, J.W. Mays and A.T. Avgeropoulos, "Synthesis, characterization (molecular-morphological) and theoretical morphology predictions of linear triblock terpolymers containing poly(cyclohexadiene)", Polymer.


4. PSim软件用户

  • Chemical Companies
  • - Proctor & Gamble
  • - Dow
  • Research Laboratories
  • - Oak Ridge National Lab
  • - Sandia National Lab
  • - National Renewable Energy Lab
  • Academia
  • - Ohio State University
  • - Univ. of Ohio at Akron